


# A FISTFUL OF ANTIBODIES



**"MORE BINDERS. MORE HITS.  
MORE DISCOVERIES!"**

Rough-and-tumble antibody discovery group rides into town with a game-changing enrichment strategy, outgunning traditional CD138 isolation.



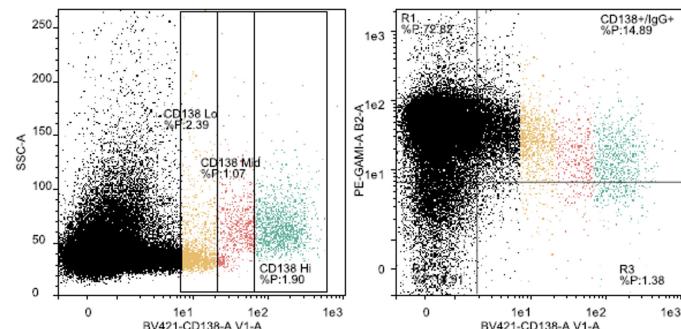
>100%  
INCREASE  
IN HITS

# A Fistful of Antibodies: Innovative Cell Isolation to Drive More Hits

## The Problem

Certain targets in antibody discovery present challenges because they produce few hits. This can be due to several reasons: immunogenicity of the target, immunomodulatory effects of the target during immunization, the immunization conditions used, and/or the discovery methods used. Even still, some programs demand differentiated activity for their antibody drugs, making it difficult to discover the target profile. Exploring a large set of hits helps start a campaign with the most options.

## The Solution


CD138 is a marker for plasma cells, and commercial CD138+ cell isolation kits work well to isolate antibody-secreting cells (ASCs) from mouse. The expression profile of CD138 in immunized mouse lymphocytes consistently shows a large negative cell population, a low-mid positive shoulder, and a positive population with higher SSC.

We used a microfluidic-based cell sorter (Miltenyi MACSQuant Tyto) to sort 3 populations of CD138+ cells from immunized wild-type mice (Fig. 1). All 3 populations show a majority express IgG (Fig. 1, right plot). We further enriched the CD138-hi population for CD138-hi and the antigen, Human Serum Albumin (HSA) in a 4th population.

The secretion rate of all 4 sorted populations was confirmed using AbTheneum's antibody capture & screen workflow (Fig. 2). The results confirm that CD138-hi has the highest hit rate (HSA-positive/all IgGs). We also confirmed that most CD138-hi cells also express IgG on the surface, and further enriching for antigen increases the hit rate.

We used the CD138 experiment to develop a two step cell sorting workflow to enrich antigen-specific antibody-secreting cells. The workflow, called FACS antigen+, was applied in head-to-head comparisons with commercial CD138+ cell isolation for several therapeutic targets (Table 1).

All trials using Single Cell's FACS antigen+ cell isolation delivered more hits (antibody sequences of screened antigen-positive antibodies), even in frozen or low titer samples, compared to traditional CD138 cell isolation kits. Three of the 6 trials delivered >100% hits compared to magnetic CD138+ cell isolation, highlighting the power of FACS antigen+ workflow with AbTheneum antibody discovery.



**Figure 1.** CD138 cell sorting experiment in mouse lymphocytes. CD138+ vs. SSC (left) and CD138+ vs. IgG (right) showing 3 sorted populations: CD138-lo (yellow), CD138-mid (pink), and CD138-hi (green).

|           | CD138 <sup>lo</sup> | CD138 <sup>mid</sup> | CD138 <sup>hi</sup> | CD138 <sup>hi</sup> /HSA+ |
|-----------|---------------------|----------------------|---------------------|---------------------------|
| HSA Count | 75                  | 476                  | 467                 | 1,072                     |
| IgG Count | 425                 | 1,740                | 1,905               | 1,656                     |
| Hit rate  | 17.6%               | 27.4%                | 24.5%               | 64.7%                     |

**Figure 2.** Sorted CD138 cells screened for IgG secretion and hit rate of antigen-specific antibodies (HSA hits).

**Table 1.** Six diverse IO targets were tested in head-to-head comparisons of commercial CD138+ cell isolation kits vs. FACS antigen+ workflow. Hit rate are number of screened antibody sequences delivered for each campaign.

| Antibody Campaign      | Cell Isolation | Immunization Duration | Fresh/ Frozen | Hits Delivered | % increase in hits                                                                         |
|------------------------|----------------|-----------------------|---------------|----------------|--------------------------------------------------------------------------------------------|
| IO Target 1 Transgenic | MACS CD138+    | 35 Days               | Fresh         | 351            | 40%   |
|                        | FACS antigen+  | 56 Days               | Fresh         | 491            |                                                                                            |
| IO Target 2 Transgenic | MACS CD138+    | 35 Days               | Fresh         | 456            | 109%  |
|                        | FACS antigen+  | 35 Days               | Frozen        | 954            |                                                                                            |
| IO Target 3 Transgenic | MACS CD138+    | 49 Days               | Fresh         | 201            | 50%   |
|                        | FACS antigen+  | 63 Days               | Frozen        | 302            |                                                                                            |
| IO Target 4 Transgenic | MACS CD138+    | 63 Days               | Fresh         | 265            | 102%  |
|                        | FACS antigen+  | 91 Days               | Frozen        | 535            |                                                                                            |
| IO Target 5 WT         | MACS CD138+    | 35 Days               | Fresh         | 456            | 165%  |
|                        | FACS antigen+  | 35 days               | Frozen        | 1,210          |                                                                                            |
| IO Target 6 Transgenic | MACS CD138+    | 49 Days               | Fresh         | 364            | 54%   |
|                        | FACS antigen+  | 49 days               | Fresh         | 562            |                                                                                            |

Learn more at

[singlecelltechnology.com](http://singlecelltechnology.com)

